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Abstract

The Adomian Decomposition Method is a semi-analytical method for solving ordinary and
partial non-linear differential equations. The crucial aspect of the method is employment of the
‘Adomian polynomials’, which allow for solution convergence of the nonlinear portion of the
equation without simply linearizing the system. These polynomials mathematically generalise to
Maclaurin series about an arbitrary external parameter which gives the solution method more
flexibility than direct Taylor series expansion.In the present paper, we foundthe solution of
nonlinear initial value problems in series form by using Adomian decomposition method.
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Introduction

Recently, more attention devoted to the search for reliable and more efficient solution
methods for equations modelling physical phenomena in various fields of science and
engineering [6,7].0ne of the methods which has received much concern is the Adomian
decomposition method.The Adomian decomposition method has been used to solve various
scientific models. The Adomian decomposition method yields rapidly convergent series
solution with much less computational week. Unlike the traditional numerical methods, the
Adomian decomposition method needs no discretisation, linearization, transformation or
perturbation. In this paper, our aim is to determine the accuracy and efficiency of the Adomian
decomposition method in solving initial value problems of linear and non-linear fractional
differential equations.
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Riemann-Liouville fractional integral
Definition

Suppose that f(z) € C([a,b]), a < x < b then the Riemann-
Liouville fractional integral of order « of a function f(x) is defined by

1 f(
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2@ = 7 | gt
where « €] — 00, 00|
This formula represents the integral of arbitrary order a > 0, but
does not permit order a« = 0 because it formally corresponds to the
identity operator.

Riemann-Liouville Fractional Derivative

Recently many models are formulated in terms of fractional deriva-
tives, such as in control processing, viscoelasticity, signal processing
and anomalous diffusion.

Definition

The Riemann-Liouville fractional derivative [4] of a function f(z)
where f(z) € C([a,b])and a < x < b with fractional order a, a €]0, 1
is defined as
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This is called the Riemann-Liouville fractional derivative of arbitrary
order a.

If 0<a<lie,a€l0l]

then D%, f(x) exists for all f € C'([a,b]) all z €]a, b

Lemma 1:
for a, 08>0, f(x) € L1]0,T] then
I001) f () = 16 f () = 1) I f (=)
is satisfied almost everywhere on [0,7T]. Moreover, if f(x) € L;[0,T]
then the above equation is true for all x € [0, 7.



Caputo Fractional Derivative

Definition

Mathematically [1,2,3] it is defined as,
Suppose that, a >0, x > a, a,a,x € R

(

1 fx A0 dt, n—1<a<néeN

P(n—a) Ja (x—t)otl—n
fo(:c) = < dilj;gfc) a=mn EN i (3)

o @) a<o

is called the Caputo fractional derivative or Caputo fractional dif-
ferential operator of «.

Lemma 2:
If a>0, f(z) € L1[0,T].

then, “Df, I f(z) = f(z) for all = € [0,T)

Proof:
By the definition of Riemann-Liouville fractional derivative, by using

equation (2)
D6 @) = prr 2 | g

I'(l1—a) ) du (x —t)e
by substltutmg a=n, f(x) = ft)y=t
(x—1) =
= —dt = du

Also, new limit point will be
whent =2 =u=0
whent=0=u=ux

*. The above equation becomes,

o 1 d 0 (x —u)
Dy ——) Ar /x (—du)

['(1—mn) dx ((u)”)
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Tl



Now, using integration by parts,

D f(z) =ﬁ%/j [(:U—u) /O i — (/Od(xd—;“)/O u—”du)du]

1 d [* ul™")
“T(1—n) do /0 Cnr1

1 d [ u—n+1+1 ]l‘
(=n+1)I(1—n) dz |-n+1+1],
1 (—n +2)z "1

(—n+1DI'(1—n) (—n+2)

Hence )
x

Df(z) = sy g R (4)

Secondly, by the definition of Riemann-Liouville fractional integral of
a function f(x)

N Y 0
B0 = ey ),

Let usput a =n, f(z) =x = f(t) =t
(x—t)=u

= —dt = du

whent =2 =u=20
whent=0=u==x



*. The above integral becomes,

1 T —u
n _ d
o) = |, S

Iy () :(n + 1)I'(n+1) T (5)

Now,
Multiplying the Riemann-Liouville derivative operator to the equation
(5) and using (4), we get

xn+1

Dy I (x) =Dj

=D

xfn+1

m+1D)I'(n+1) (1—=n)I'(1—n)

Hence, D1} () =f(x)



Adomian Decomposition Method
Consider the differential equation

Lv+Rv+Nv=g------ (6)

where,

L - highest order derivative & easily invertible.

R - linear differential operator of order less than L.

Nv - represents the non-linear terms.

g - source term.

The functions v(x) is supposed to be bounded for all z € I = [0,7] &

the nonlinear term Nv satisfies Lipschitz condition i.e.,

for initial value problem, we conveniently define L' for L = jt—'; as the
n-fold definite integral from zero to x. If L is second order operator,
L~!is a two fold integral & so by solving for v.

INv — Nw| < ki|v — w|

where kp is a positive constant.

Since L is invertible there, we get,

L'Lv=L'g—L'Ro—L'Nv+B--------. (7)

where,
B is the constant of integration & satisfies LB =0 .

L= [ () ds

Now, the Adomian decomposition method consists of approximating
the solution of (6) as an infinite series

U(y,$) - ZUH(Q7$) """""" (8)
n=0
and the nonlinear term Nv will be decomposed by the infinite series
of Adomian polynomials.

Nov = ZAn(vo,m,vz, ) e (9)
n=0
where An is Adomian polynomial calculated by using the formula,
1| d"
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where,
w(A) = Z Aoy,
n=0

Substituting the decomposition series i.e. equation (8) & (9) in (7).
We get,

Z vy, x) = B+L 1g— LlR( Z vn (v, x)) — Z Ap(vg, vy -+ vy) -+ (10)
n=0 n=0

n=0

from the above equation, we can say that,
vo =B+ L 1g

vy = — L (Ruy) — L71(Ay)

— L YA

vy = — LY Ruy) Y(Ay)

Vpi1 =L ' (Rv,) — L7Y(A,), n>0

where B is the initial condition.
Hence all terms of V are can be found & the general solution obtained
by using Adomian decomposition method as

oo

n=0

The convergence of the series [5]has been proved.

Now, we apply Adomian decomposition method to derive the solution
of fractional partial differential equations. We solve few examples by
Adomian decomposition method.

Firstly, we apply the Adomian decomposition method to obtain ap-
proximate solution of initial value problems for fractional BBM-Burgers
equation with € = 1.



Example 1:
Consider the following equation

P (1 vts.0)) - (v )0t

0? 0
=g by

where

with initial condition

v(y,0) =siny, (y,z) €10,1] x [0,T7.

Solution:
The given equation is

2500 — (L, v(p2)) = (o 0)Lp(p2) ) oo (12)

with initial condition

v(y,0) =siny, (y,z) €0,1] x [0,T].

and the fractional differential operator % defined in the definition
of Caputo fractional derivative. Let I* be the inverse of the operator
80/,
dz
Now applying I to the both sides of given equation (12)
we get,

I¢ [385,;@”(9’ :c)] = I%(Lyv) — I*(vLywv) + B
= v(y,z) = [*(Lyyv) — I*(Nv) + B

where Nv = vL,v
& B is constant of integration.
In order to solve our problems we must generalize these Adomian poly-
nomials as follows.

) 8 - 7
(S E )] e




The first few terms of the Adomian polynomials are derived as fol-
lows

Ay =1y %—1;
=il e (5450
Ay —Uo% 012—22
Aoy :% [dd_; {(Uo + Avp + A%0?) (?9?;) i /\g?jl " /\2(9(202)] A=0
Ay :Uo% + Ul% T Uz%
Similarly,
As :voaa—? + 1%—? + 02% v ?9_1;)
and so on

Using equation (10)we get

=41 (St 1 (S00)

n=0
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This gives,
vo =B = v(y,0)
vy =1"(Lyv —0) — 1A
(%) :]a(LyyU — 1) — ]aAl
Upy1 =I1"(Lyv —n) — I A,
by putting the values of vy, v, --- from above we get the solution of

the initial value problem.
U(yax):UO+U1+UQ+---+Un+...

we have the initial conditions, using this we get

v =v(y,0) = f(y) = siny
(%] ZIQ(LyyU — O) — IaA()

11 N L L N
" |, e O ), G
fl(y) 7%

1=

['(a+1)
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where,

f1ily) = =) + fw)f' ()
=siny +siny - cosy
=siny + (1 + cosy)
vy =I%(Lyv — 1) — I® A,

= fa(y) "

T
['2a+1)

where

fy) =) = fWfil) = fly) - )
= sin®y + [~1 — 5cosy — cos’y — (1 + cosy) cosy] - siny

vg =1%(Lyyvs) — I%(Az)

3a
vz =f3(y) .

I'(Ba+1)

Similarly,

fa(y) e
['(na+1)

Up =
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.. Summing all these terms i.e., the solution of the equation in series
is given by

.2) =0) + Fro g ) + e W)+
x3a x4a
1“(3a—+1)f3(y) + mfzx(y) +o
+F@Z+Ufﬁw+”
M%@:Ezﬁﬁ;ﬁjh@)

n=0

where fy(y) is an initial condition.

Example 2:
Consider the following nonlinear fractional equation:

Div + Div — Dy + v*=0

O0<y<1,0<z<],0<a<l1

with initial condition,

v(y,0) = ¢ = fly) = u*
(y,x) € Q x [0,T]
here Q2 = (0,1)

Solution:
Given nonlinear fractional equation is

The standard form of the given fractional equations operator form is

Div = —[o(y. @) — Lyyo(y,2) + Lyo(y,z)--- -~ (14)
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where,

0> 0

"o oy

& the fractional operator D%v defined in the definition of Caputo
fractional derivative respectively.
I is the inverse of D¢
Now,
applying I to the both side of equation (14)

v(y,x) = —1*(Nv) — I*(Ly(y,z)) + I*(Lyo(y, z)) + ¢
where Nv = v,
According to the Adomian decomposition method we assume series
solution for the unknown function v(y, z) in the form

L

o0

U(yvx) - Z Uﬂ(yax)

n=0
To solve this problem, we must genralize these Adomian polynomials

as follows
1 dn 00 _ 00 .
A, =— A, AN,
1w (Xve) ()]

1=0

Ao =Vp *+ Vg = U(Q)
d
:a[(

Al =VoU1 + V10

Ay vy + >\U1)<Uo + )\Ul)} A=0

A1 =2vpv;
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1 d*
A, =512 (vo + vy + )\21}2) (vo + Avr + )\ZU2)]
! i A=0
=2vv9 + v%
1 d3 [ 3 2 3
3= (vo + Avi + Nus) (vg + Avy + A va + Nus)
! I A=0

=2v9v3 + 20109

and so on.

Now, using equation (10) by Adomian decomposition method,
we have,

00 00 00
Z Un(yrx) - _IQ(ZATL(U(LUM T 7U Z yyvn +Ia Z yUn
n=0 n=0 n=0

from this equation we observe that,

vo =v(y,0) = f(y)
V1 = — ]a(A()) — Ia(LyyU()) + Ia(LyU())
vy = — I%(Ay) — I°(Lyyv1) + I°(Lyvy)

Unyr = — 19(An) = I%(Lyyvn) + 1%(Lyvn)
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by substituting the values of vy, vy, vo, - - -
we get the solutions of the initial value problems

U=U0+U1—|—U2+’U3+"'—|—’Un+"'

vo =v(y,z) = f(y) =y
vl = — [a(Ao) — Ia(LyyU()) + ]O‘(Lyvo)

:mfl(y)

where,

) = (W) + ") - ['v)
=yt — 2y +2

4 "
S =yt — 2 2| =—/———
e s ]

Vo) = — [a(Al) — IO‘(Lyyvl) =+ IO‘(Lyvl)

:L.2oz

:m f2(y)

where,
foly) = =2f W) fily) + [ (w) — fiw)]
= 2% +8y* +2
also

V3 = — IQ(AQ) — IQ(Lyyvg) + [a(Ly’UQ)

- f3(y)

X
Vo =s——m
P TT(Ba+ 1)
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where

f3(y) = =2f W) fo(y) — 27 (v) — 13 () + f3(y)
= 3y% — 8y° + 40y* — 8y? + 24y — 20

Similarly,

4o

m fa(y)

Vg —

xna

Un :m fu(y)

.. summing all these terms
.. The solution of the given initial value problem is given by,

vy, z) =f(y) + F(&x—:l) fily) + F(%il)fz(y) + F(32—i1)f3(y)
+oee mfn(y)
Sou(y,x) = Z %fn(y)

=0

3

this gives the solution of initial value problem.
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